Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1907, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429257

RESUMO

Plants are capable of assembling beneficial rhizomicrobiomes through a "cry for help" mechanism upon pathogen infestation; however, it remains unknown whether we can use nonpathogenic strains to induce plants to assemble a rhizomicrobiome against pathogen invasion. Here, we used a series of derivatives of Pseudomonas syringae pv. tomato DC3000 to elicit different levels of the immune response to Arabidopsis and revealed that two nonpathogenic DC3000 derivatives induced the beneficial soil-borne legacy, demonstrating a similar "cry for help" triggering effect as the wild-type DC3000. In addition, an increase in the abundance of Devosia in the rhizosphere induced by the decreased root exudation of myristic acid was confirmed to be responsible for growth promotion and disease suppression of the soil-borne legacy. Furthermore, the "cry for help" response could be induced by heat-killed DC3000 and flg22 and blocked by an effector triggered immunity (ETI) -eliciting derivative of DC3000. In conclusion, we demonstrate the potential of nonpathogenic bacteria and bacterial elicitors to promote the generation of disease-suppressive soils.


Assuntos
Arabidopsis , Pseudomonas syringae , Animais , Estro , Temperatura Alta , Solo
2.
Cell Rep ; 43(4): 114030, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38551966

RESUMO

Trichoderma spp. have evolved the capacity to communicate with plants by producing various secondary metabolites (SMs). Nonhormonal SMs play important roles in plant root development, while specific SMs from rhizosphere microbes and their underlying mechanisms to control plant root branching are still largely unknown. In this study, a compound, anthranilic acid (2-AA), is identified from T. guizhouense NJAU4742 to promote lateral root development. Further studies demonstrate that 2-AA positively regulates auxin signaling and transport in the canonical auxin pathway. 2-AA also partly rescues the lateral root numbers of CASP1pro:shy2-2, which regulates endodermal cell wall remodeling via an RBOHF-induced reactive oxygen species burst. In addition, our work reports another role for microbial 2-AA in the regulation of lateral root development, which is different from its better-known role in plant indole-3-acetic acid biosynthesis. In summary, this study identifies 2-AA from T. guizhouense NJAU4742, which plays versatile roles in regulating plant root development.


Assuntos
Parede Celular , Ácidos Indolacéticos , Raízes de Plantas , Transdução de Sinais , Trichoderma , ortoaminobenzoatos , Ácidos Indolacéticos/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Trichoderma/metabolismo , Trichoderma/crescimento & desenvolvimento , ortoaminobenzoatos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo
3.
New Phytol ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494698

RESUMO

The rhizosphere microbiome plays critical roles in plant growth and provides promising solutions for sustainable agriculture. While the rhizosphere microbiome frequently fluctuates with the soil environment, recent studies have demonstrated that a small proportion of the microbiome is consistently assembled in the rhizosphere of a specific plant genotype regardless of the soil condition, which is determined by host genetics. Based on these breakthroughs, which involved exploiting the plant-beneficial function of the rhizosphere microbiome, we propose to divide the rhizosphere microbiome into environment-dominated and plant genetic-dominated components based on their different assembly mechanisms. Subsequently, two strategies to explore the different rhizosphere microbiome components for agricultural production are suggested, that is, the precise management of the environment-dominated rhizosphere microbiome by agronomic practices, and the elucidation of the plant genetic basis of the plant genetic-dominated rhizosphere microbiome for breeding microbiome-assisted crop varieties. We finally present the major challenges that need to be overcome to implement strategies for modulating these two components of the rhizosphere microbiome.

4.
Appl Microbiol Biotechnol ; 108(1): 216, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363378

RESUMO

Acidic xylanases are widely used in industries such as biofuels, animal feeding, and fruit juice clarification due to their tolerance to acidic environments. However, the factors controlling their acid stability, especially in GH10 xylanases, are only partially understood. In this study, we identified a series of thermostable GH10 xylanases with optimal temperatures ranging from 70 to 90 °C, and among these, five enzymes (Xyn10C, Xyn10RE, Xyn10TC, Xyn10BS, and Xyn10PC) exhibited remarkable stability at pH 2.0. Our statistical analysis highlighted several factors contributing to the acid stability of GH10 xylanases, including electrostatic repulsion, π-π stacking, ionic bonds, hydrogen bonds, and Van der Waals interactions. Furthermore, through mutagenesis studies, we uncovered that acid stability is influenced by a complex interplay of amino acid residues. The key amino acid sites determining the acid stability of GH10 xylanases were thus elucidated, mainly concentrated in two surface regions behind the enzyme active center. Notably, the critical residues associated with acid stability markedly enhanced Xyn10RE's thermostability by more than sixfold, indicating a potential acid-thermal interplay in GH10 xylanases. This study not only reported a series of valuable genes but also provided a range of modification targets for enhancing the acid stability of GH10 xylanases. KEY POINTS: • Five acid stable and thermostable GH10 xylanases were reported. • The key amino acid sites, mainly forming two enriched surface regions behind the enzyme active center, were identified responsible for acid stability of GH10 xylanases. • The finding revealed interactive amino acid sites, offering a pathway for synergistic enhancement of both acid stability and thermostability in GH10 xylanase modifications.


Assuntos
Aminoácidos , Endo-1,4-beta-Xilanases , Aminoácidos/genética , Endo-1,4-beta-Xilanases/metabolismo , Mutagênese , Temperatura , Fungos/metabolismo , Estabilidade Enzimática
5.
Microb Biotechnol ; 16(12): 2250-2263, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837627

RESUMO

Species of the genus Bacillus have been widely used for the biocontrol of plant diseases in the demand for sustainable agricultural development. New mechanisms underlying Bacillus biocontrol activity have been revealed with the development of microbiome and microbe-plant interaction research. In this review, we first briefly introduce the typical Bacillus biocontrol mechanisms, such as the production of antimicrobial compounds, competition for niches/nutrients, and induction of systemic resistance. Then, we discussed in detail the new mechanisms of pathogen quorum sensing interference and reshaping of the soil microbiota. The "cry for help" mechanism was also introduced, in which plants can release specific signals under pathogen attack to recruit biocontrol Bacillus for root colonization against invasion. Finally, two emerging strategies for enhancing the biocontrol efficacy of Bacillus agents, including the construction of synthetic microbial consortia and the application of rhizosphere-derived prebiotics, were proposed.


Assuntos
Bacillus , Microbiologia do Solo , Agricultura , Plantas , Rizosfera , Raízes de Plantas
6.
Appl Microbiol Biotechnol ; 107(22): 6873-6886, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37715802

RESUMO

XynAF1 from Aspergillus fumigatus Z5 is an efficient thermophilic xylanase belonging to glycoside hydrolase family 10 (GH10). The non-catalytic amino acids N179 and R246 in its catalytic center formed one and three intermolecular H-bonds with the substrate in the aglycone region, respectively. Here we purified XynAF1-N179S and XynAF1-R246K, and obtained the protein-product complex structures by X-ray diffraction. The snapshots indicated that mutations at N179 and R246 had decreased the substrate-binding ability in the aglycone region. XynAF1-N179S, XynAF1-R246K, and XynAF1-N179S-R246K lost one, three, and four H-bonds with the substrate in comparison with the wild-type XynAF1, respectively, but this had little influence on the protein structure. As expected, N179S, R246K, and N179S-R246K led to a gradual decrease of substrate affinity of XynAF1. Interestingly, the enzyme assay showed that N179S increased catalytic efficiency, while both R246K and N179S-R246K had decreased catalytic efficiency. KEY POINTS: • The non-catalytic amino acids of XynAF1 could form H-bonds with the substrate. • The protein-product complex structures were obtained by X-ray diffraction. • The enzyme-substrate-binding capacity could affect enzyme catalytic efficiency.

7.
New Phytol ; 239(6): 2307-2319, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357338

RESUMO

Rhizomicrobiome plays important roles in plant growth and health, contributing to the sustainable development of agriculture. Plants recruit and assemble the rhizomicrobiome to satisfy their functional requirements, which is widely recognized as the 'cry for help' theory, but the intrinsic mechanisms are still limited. In this study, we revealed a novel mechanism by which plants reprogram the functional expression of inhabited rhizobacteria, in addition to the de novo recruitment of soil microbes, to satisfy different functional requirements as plants grow. This might be an efficient and low-cost strategy and a substantial extension to the rhizomicrobiome recruitment theory. We found that the plant regulated the sequential expression of genes related to biocontrol and plant growth promotion in two well-studied rhizobacteria Bacillus velezensis SQR9 and Pseudomonas protegens CHA0 through root exudate succession across the plant developmental stages. Sixteen key chemicals in root exudates were identified to significantly regulate the rhizobacterial functional gene expression by high-throughput qPCR. This study not only deepens our understanding of the interaction between the plant-rhizosphere microbiome, but also provides a novel strategy to regulate and balance the different functional expression of the rhizomicrobiome to improve plant health and growth.


Assuntos
Desenvolvimento Vegetal , Raízes de Plantas , Raízes de Plantas/metabolismo , Exsudatos e Transudatos , Plantas/microbiologia , Solo , Rizosfera , Microbiologia do Solo , Exsudatos de Plantas/metabolismo
8.
Curr Opin Microbiol ; 72: 102269, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36682279

RESUMO

Harnessing the power of beneficial microbes in the rhizosphere to improve crop performance is a key goal of sustainable agriculture. However, the precise management of rhizosphere microbes for crop growth and health remains challenging because we lack a comprehensive understanding of the plant-rhizomicrobiome relationship. In this review, we discuss the latest research progress on root colonisation by representative beneficial microbes (e.g. Bacillus spp. and Pseudomonas spp.). We also highlight the bidirectional chemical communication between microbes and plant roots for precise functional control of beneficial microbes in the rhizosphere, as well as advances in understanding how beneficial microbes overcome the immune system of plants. Finally, we propose future research objectives that will help us better understand the complex network of plant-microbe interactions.


Assuntos
Raízes de Plantas , Plantas , Rizosfera , Agricultura
9.
Adv Sci (Weinh) ; 10(5): e2205215, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529951

RESUMO

Seed-borne pathogens can inhabit the rhizosphere and infect the plant after germination. The rhizosphere microbiome plays critical roles in defending against seed-borne pathogens. However, the assembly of a core rhizosphere microbiome to suppress seed-borne pathogens is unknown. Here, the root-associated microbiome is infested with seed-borne Fusarium in sterile environment, while the root-associated microbiome is not infested when it interacts with the native soil microbiome across maize cultivars, suggesting that a core rhizosphere microbiome assembles to suppress seed-borne Fusarium. Two strategies of progressive dilution and rhizodepositional attraction are applied to identify the core rhizobacteria. A synthetic microbiota (SynM) is constructed using the isolates of the core rhizobacteria and optimized according to superior community stability and Fusarium-suppression capability, which surpasses the single strain and randomly formed microbiota. The optimized SynM (OptSynM) presents a distinctive cooperative pattern in which a key strain harbors the Fusarium suppression function by synthesizing the antagonistic substance fengycin, while other members intensify the functional performance by promoting the growth and the expression of the antagonistic and plant-growth-promoting related genes of the key strain. This study demonstrates innovative approaches to construct stable and minimal microbiota for sustainable agriculture and proposes a unique cooperative pattern to sustain community stability and functionality.


Assuntos
Bacillus , Fusarium , Microbiota , Fusarium/fisiologia , Bacillus/metabolismo , Zea mays/microbiologia , Raízes de Plantas/microbiologia , Microbiota/fisiologia , Sementes
10.
Environ Microbiol ; 25(2): 331-351, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36367399

RESUMO

In this study, the growth of fungi Trichoderma guizhouense NJAU4742 was significantly inhibited under acid stress, and the genes related to acid stress were identified based on transcriptome analysis. Four genes including tna1, adh2/4, and bna3 were significantly up-regulated. Meanwhile, intracellular hydrogen ions accumulated under acid stress, and ATP synthesis was induced to transport hydrogen ions to maintain hydrogen ion balance. The enhancement of glycolysis pathway was also detected, and a large amount of pyruvic acid from glycolysis was accumulated due to the activity limitation of PDH enzymes. Finally, acetaldehyde accumulated, resulting in the induction of adh2/4. In order to cope with stress caused by acetaldehyde, cells enhanced the synthesis of NAD+ by increasing the expression of tna1 and bna3 genes. NAD+ effectively improved the antioxidant capacity of cells, but the NAD+ supplement pathway mediated by bna3 could also cause the accumulation of kynurenine (KYN), which was an inducer of apoptosis. In addition, KYN had a specific promoting effect on acetaldehyde synthesis by improving the expression of eno2 gene, which led to the extremely high intracellular acetaldehyde in the cell under acidic stress. Our findings provided a route to better understand the response of filamentous fungi under acid stress.


Assuntos
Hypocreales , Trichoderma , Cinurenina/metabolismo , NAD/metabolismo , Solo , Prótons , Hypocreales/metabolismo , Apoptose/genética , Acetaldeído/metabolismo , Trichoderma/genética , Trichoderma/metabolismo
11.
AMB Express ; 12(1): 133, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36287351

RESUMO

Bacillus is a genus of microorganisms (bacteria) and contains many important commercial species used in industry, agriculture and healthcare. Many different Bacilli are relatively well understood at the single-cell level; however, molecular tools that determine the diversity and ecology of Bacillus community are limited, which limits our understanding of how the Bacillus community works. In the present study, we investigated the potential of the housekeeping gene gyrA as a molecular marker for determining the diversity of Bacillus species. The amplification efficiency for Bacillus species diversity could be greatly improved by primer design. Therefore, we designed a novel primer pair gyrA3 that can detect at least 92 Bacillus species and related species. For B. amyloliquefaciens, B. pumilus, and B. megaterium, we observed that the high variability of the gyrA gene allows for more detailed clustering at the subspecies level that cannot be achieved by the 16S rRNA gene. Since gyrA provides better phylogenetic resolution than 16S rRNA and informs on the diversity of the Bacillus community, we propose that the gyrA gene may have broad application prospects in the study of Bacillus ecology.

12.
mSystems ; 7(6): e0077822, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36218362

RESUMO

Kin discrimination in nature is an effective way for bacteria to stabilize population cooperation and maintain progeny benefits. However, so far, the research on kin discrimination for Bacillus still has concentrated on "attack and defense" between cells and diffusion-dependent molecular signals of quorum sensing, kin recognition in Bacillus, however, has not been reported. To determine whether flagellar is involve in the kin recognition of Bacillus, we constructed Bacillus velezensis SQR9 assembled with flagellin of its kin and non-kin strains, and performed a swarm boundary assay with SQR9, then analyzed sequence variation of flagellin and other flagellar structural proteins in B. velezensis genus. Our results showed that SQR9 assembled with flagellin of non-kin strains was more likely to form a border phenotype with wild-type strain SQR9 in swarm assay than that of kin strains, and that non-kin strains had greater variation in flagellin than kin strains. In B. velezensis, these variations in flagellin were prevalent and had evolved significantly faster than other flagellar structural proteins. Therefore, we proposed that flagellin is an effective tool partly involved in the kin recognition of B. velezensis strains. IMPORTANCE Kin selection plays an important role in stabilizing population cooperation and maintaining the progeny benefits for bacteria in nature. However, to date, the role of flagellin in kin recognition in Bacillus has not been reported. By using rhizospheric Bacillus velezensis SQR9, we accomplished flagellin region interchange among its related strains, and show that flagellin acts as a mediator to distinguish kin from non-kin in B. velezensis. We demonstrated the polymorphism of flagellin in B. velezensis through alignment analysis of flagellin protein sequences. Therefore, it was proposed that flagellin was likely to be an effective tool for mediating kin recognition in B. velezensis.


Assuntos
Bacillus , Flagelina , Flagelina/genética , Bacillus/genética , Polimorfismo Genético , Sequência de Aminoácidos
13.
Microb Cell Fact ; 21(1): 144, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842666

RESUMO

BACKGROUND: Filamentous fungi are highly efficient at deconstructing plant biomass by secreting a variety of enzymes, but the complex enzymatic regulation underlying this process is not conserved and remains unclear. RESULTS: In this study, cellulases and xylanases could specifically respond to Avicel- and xylan-induction, respectively, in lignocellulose-degrading strain Trichoderma guizhouense NJAU4742, however, the differentially regulated cellulases and xylanases were both under the absolute control of the same TgXyr1-mediated pathway. Further analysis showed that Avicel could specifically induce cellulase expression, which supported the existence of an unknown specific regulator of cellulases in strain NJAU4742. The xylanase secretion is very complex, GH10 endoxylanases could only be induced by Avicel, while, other major xylanases were significantly induced by both Avicel and xylan. For GH10 xylanases, an unknown specific regulator was also deduced to exist. Meanwhile, the post-transcriptional inhibition was subsequently suggested to stop the Avicel-induced xylanases secretion, which explained the specifically high xylanase activities when induced by xylan in strain NJAU4742. Additionally, an economical strategy used by strain NJAU4742 was proposed to sense the environmental lignocellulose under the carbon starvation condition, that only slightly activating 4 lignocellulose-degrading genes before largely secreting all 33 TgXyr1-controlled lignocellulases if confirming the existence of lignocellulose components. CONCLUSIONS: This study, aiming to explore the unknown mechanisms of plant biomass-degrading enzymes regulation through the combined omics analysis, will open directions for in-depth understanding the complex carbon utilization in filamentous fungi.


Assuntos
Celulases , Hypocreales , Trichoderma , Carbono/metabolismo , Celulases/genética , Celulases/metabolismo , Celulose/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Xilanos/metabolismo
14.
Nat Commun ; 13(1): 1023, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197480

RESUMO

Understanding the driving forces and intrinsic mechanisms of microbial competition is a fundamental question in microbial ecology. Despite the well-established negative correlation between exploitation competition and phylogenetic distance, the process of interference competition that is exemplified by antagonism remains controversial. Here, we studied the genus Bacillus, a commonly recognized producer of multifarious antibiotics, to explore the role of phylogenetic patterns of biosynthetic gene clusters (BGCs) in mediating the relationship between antagonism and phylogeny. Comparative genomic analysis revealed a positive association between BGC distance and phylogenetic distance. Antagonistic tests demonstrated that the inhibition phenotype positively correlated with both phylogenetic and predicted BGC distance, especially for antagonistic strains possessing abundant BGCs. Mutant-based verification showed that the antagonism was dependent on the BGCs that specifically harbored by the antagonistic strain. These findings highlight that BGC-phylogeny coherence regulates the positive correlation between congeneric antagonism and phylogenetic distance, which deepens our understanding of the driving force and intrinsic mechanism of microbial interactions.


Assuntos
Bacillus , Antibacterianos/farmacologia , Bacillus/genética , Vias Biossintéticas/genética , Família Multigênica , Filogenia
15.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206311

RESUMO

Chemotaxis, the ability of motile bacteria to direct their movement in gradients of attractants and repellents, plays an important role during the rhizosphere colonization by rhizobacteria. The rhizosphere is a unique niche for plant-microbe interactions. Root exudates are highly complex mixtures of chemoeffectors composed of hundreds of different compounds. Chemotaxis towards root exudates initiates rhizobacteria recruitment and the establishment of bacteria-root interactions. Over the last years, important progress has been made in the identification of root exudate components that play key roles in the colonization process, as well as in the identification of the cognate chemoreceptors. In the first part of this review, we summarized the roles of representative chemoeffectors that induce chemotaxis in typical rhizobacteria and discussed the structure and function of rhizobacterial chemoreceptors. In the second part we reviewed findings on how rhizobacterial chemotaxis and other root-microbe interactions promote the establishment of beneficial rhizobacteria-plant interactions leading to plant growth promotion and protection of plant health. In the last part we identified the existing gaps in the knowledge and discussed future research efforts that are necessary to close them.


Assuntos
Bactérias , Quimiotaxia , Exsudatos de Plantas , Plantas/microbiologia , Rizosfera , Fenômenos Fisiológicos Bacterianos , Microbiota , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas/metabolismo
16.
Appl Microbiol Biotechnol ; 105(11): 4561-4576, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34014347

RESUMO

Xylanases have a broad range of applications in industrial biotechnologies, which require the enzymes to resist the high-temperature environments. The majority of xylanases have maximum activity at moderate temperatures, which limited their potential applications in industries. In this study, a thermophilic GH10 family xylanase XynAF1 from the high-temperature composting strain Aspergillus fumigatus Z5 was characterized and engineered to further improve its thermostability. XynAF1 has the optimal reaction temperature of 90 °C. The crystal structure of XynAF1 was obtained by X-ray diffraction after heterologous expression, purification, and crystallization. The high-resolution X-ray crystallographic structure of the protein-product complex was obtained by soaking the apo-state crystal with xylotetraose. Structure analysis indicated that XynAF1 has a rigid skeleton, which helps to maintain the hyperthermophilic characteristic. The homologous structure analysis and the catalytic center mutant construction of XynAF1 indicated the conserved catalytic center contributed to the high optimum catalytic temperature. The amino acids in the surface of xylanase XynAF1 which might influence the enzyme thermostability were identified by the structure analysis. Combining the rational design with the saturation mutation at the high B-value regions, the integrative mutant XynAF1-AC with a 6-fold increase of thermostability was finally obtained. This study efficiently improved the thermostability of a GH10 family xylanase by semi-rational design, which provided a new biocatalyst for high-temperature biotechnological applications. KEY POINTS: • Obtained the crystal structure of GH10 family hyperthermophilic xylanase XynAF1. • Shed light on the understanding of the GH10 family xylanase thermophilic mechanism. • Constructed a 6-fold increased thermostability recombinant xylanase.


Assuntos
Endo-1,4-beta-Xilanases , Temperatura Alta , Cristalografia por Raios X , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Modelos Moleculares , Temperatura
17.
J Basic Microbiol ; 61(6): 569-575, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33914927

RESUMO

The phytohormone indole-3-acetic acid (IAA) has been demonstrated to contribute to the plant growth-promoting effect of rhizobacteria, but the IAA biosynthesis pathway in rhizobacteria remains unclear. The ysnE gene, encoding a putative tryptophan acetyltransferase, has been demonstrated to be involved in and strongly contribute to IAA production in Bacillus, but the mechanism is unknown. In this study, to investigate how ysnE participates in IAA biosynthesis in the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SQR9, differences in the produced IAA biosynthesis intermediates between wild-type SQR9 and ΔysnE were analyzed and compared, and the effects of different intermediate compounds on the production of IAA and the accumulation of other intermediates were also investigated. The results showed that the mutant ΔysnE produced more indole-3-lactic acid (ILA) and tryptamine (TAM) than the SQR9 wild-type strain (nearly 1.6- and 2.1-fold), while the production of tryptophol (TOL) was significantly decreased by 46%. When indole-3-pyruvic acid (IPA) served as the substrate, the concentration of ILA in the ΔysnE fermentation broth was much higher than that of the wild type, while IAA and TOL were significantly lower, and ΔysnE was lower than SQR9 in IAA and TOL with the addition of TAM. The TOL content in the ΔysnE fermentation broth was much lower than that in the wild-type SQR9 with the addition of ILA. We suggest that ysnE may be involved in the IPA and TAM pathways and play roles in indole acetaldehyde (IAAld) synthesis from IPA and TAM and in the conversion of ILA to TOL.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Genes Bacterianos/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Bacillus amyloliquefaciens/genética , Indóis/metabolismo , Mutação , Triptaminas/metabolismo , Triptofano/metabolismo
18.
Environ Microbiol ; 23(6): 2937-2954, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33754479

RESUMO

Deciphering the complex cellular behaviours and advancing the biotechnology applications of filamentous fungi increase the requirement for genetically manipulating a large number of target genes. The current strategies cannot cyclically coedit multiple genes simultaneously. In this study, we firstly revealed the existence of diverse homologous recombination (HR) types in marker-free editing of filamentous fungi, and then, demonstrated that sgRNA efficiency-mediated competitive inhibition resulted in the low integration of multiple genetic sites during coediting, which are the two major obstacles to limit the efficiency of cyclically coediting of multiple genes. To overcome these obstacles, we developed a biased cutting strategy by Cas9 to greatly enhance the desired HR type and applied a new selection marker labelling strategy for multiple donor DNAs, in which only the donor DNA with the lowest sgRNA efficiency was labelled. Combined with these strategies, we successfully developed a convenient method for cyclically coediting multiple genes in different filamentous fungi. In addition, diverse HRs resulted in a useful and convenient one-step approach for gene functional study combining both gene disruption and complementation. This research provided both a useful one-step approach for gene functional study and an efficient strategy for cyclically coediting multiple genes in filamentous fungi.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas/genética , Fungos/genética , Edição de Genes , Recombinação Homóloga , RNA Guia de Cinetoplastídeos/genética
19.
Microbiome ; 9(1): 35, 2021 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-33517892

RESUMO

BACKGROUND: The relationship between biodiversity and soil microbiome stability remains poorly understood. Here, we investigated the impacts of bacterial phylogenetic diversity on the functional traits and the stability of the soil microbiome. Communities differing in phylogenetic diversity were generated by inoculating serially diluted soil suspensions into sterilized soil, and the stability of the microbiome was assessed by detecting community variations under various pH levels. The taxonomic features and potential functional traits were detected by DNA sequencing. RESULTS: We found that bacterial communities with higher phylogenetic diversity tended to be more stable, implying that microbiomes with higher biodiversity are more resistant to perturbation. Functional gene co-occurrence network and machine learning classification analyses identified specialized metabolic functions, especially "nitrogen metabolism" and "phosphonate and phosphinate metabolism," as keystone functions. Further taxonomic annotation found that keystone functions are carried out by specific bacterial taxa, including Nitrospira and Gemmatimonas, among others. CONCLUSIONS: This study provides new insights into our understanding of the relationships between soil microbiome biodiversity and ecosystem stability and highlights specialized metabolic functions embedded in keystone taxa that may be essential for soil microbiome stability. Video abstract.


Assuntos
Microbiota/fisiologia , Filogenia , Microbiologia do Solo , Solo , Biodiversidade , Microbiota/genética
20.
Biotechnol Biofuels ; 13: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31938041

RESUMO

BACKGROUND: Filamentous fungi have the ability to efficiently decompose plant biomass, and thus are widely used in the biofuel and bioprocess industries. In process, ambient pH has been reported to strongly affect the performance of the applied functional filamentous fungi. In this study, Trichoderma guizhouense NJAU4742 was investigated under the fermentation of rice straw at different initial pH values for a detailed study. RESULTS: The results showed that NJAU4742 strain could tolerate ambient pH values ranging from 3.0 to 9.0, but had significantly higher growth speed and extracellular enzyme activities under acidic conditions. At low ambient pH (< 4), NJAU4742 strain achieved rapid degradation of rice straw by elevating the ambient pH to an optimal range through environmental alkalinization. Further proteomic analysis identified a total of 1139 intracellular and extracellular proteins during the solid-state fermentation processes, including the quantified 190 carbohydrate-active enzymes (CAZymes) responsible for rice straw degradation, such as 19 cellulases, 47 hemicellulases and 11 chitinases. Meanwhile, the analysis results clearly showed that the secreted lignocellulases had a synergistic trend in distribution according to the ambient pH, and thus led to a pH-dependent classification of lignocellulases in T. guizhouense NJAU4742. CONCLUSIONS: Most functional lignocellulases were found to be differently regulated by the ambient pH in T. guizhouense NJAU4742, which had the ability of speeding up biomass degradation by elevating the ambient pH through environmental alkalinization. These findings contribute to the theoretical basis for the biodegradation of plant biomass by filamentous fungi in the biofuel and bioprocess industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...